Exergetic Analysis of a Steam-flashing Thermal Storage System

نویسندگان

  • Paul T. O'Brien
  • John Pye
چکیده

Thermal energy storage is attractive in the design of concentrator solar thermal systems because of its ability to increase turbine capacity factor and to facilitate dispatchable, if not continuous, power output from a solar field. At the right cost, a storage system can improve overall economics of a solar energy system. Presented here is a simulation study of the performance of a cycle that uses large-scale thermal energy storage via hot compressed liquid water. Such a cycle is potentially interesting because of its ability to allow collector field, thermal storage, and power cycle to all work with the same fluid, thereby eliminating losses associated with heat exchangers working between different fluids. An exergetic analysis demonstrates that most of the exergy destruction that results from integrating this type of storage is due to the steam flashing process. Analysis identifies that a variable-pressure accumulator sized with a volumetric capacity for peak-load is the most effective method of implementing a steam flashing storage system. Although high efficiencies are possible it seems likely that the high cost of high pressure storage ultimately makes the concept nonviable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation and Optimization of Tehran Oil Refinery Steam Network in view of Exergetic, Exergoeconomic and Environmental Analysis

Due to the importance of energy consumption in a steam network of oil refinery as a significant unit, present study is concerned with the optimization of an oil refinery steam network. Here, the attempt was made to use concepts such as first and second thermodynamic laws, thermo-economic, environmental and economic discussions to investigate three different scenarios about Tehran refinery steam...

متن کامل

Exergetic, Exergoeconomic and Exergoenvironmental Multi-Objective Genetic Algorithm Optimization of Qeshm Power and Water Cogeneration Plant

In this study, optimization of Qeshm power and water desalting cogeneration plant has been investigated. The objective functions are related to maximizing exergetic efficiency and minimization of exergoeconomic and exergoenvironmental parameters. Also, the integration of RO desalination with the existing plant has been evaluated based on these analyses. This plant includes two MAPNA 25 MW gas t...

متن کامل

Thermodynamic and Exergy Analysis of a Combined Power and Desalination Plant

Making potable water through desalination plants is a very important process in Iran where clean water is highly required. On the other hand, large amount of fossil fuel sources leads to the development of gas turbine power plants all over the country. Furthermore, Persian Gulf in the south and Caspian Sea in the north could be the main sources for supplying potable water in water scarcity area...

متن کامل

Multi objective optimization of the MED-TVC system with exergetic and heat transfer analysis

The mathematical model to predict the performance and the exergetic efficiency in a multi-effect desalination system with thermal vapor compression (MED-TVC system) has been presented. The energy and the concentration conservation law were developed for each effect, considering the boiling point elevation and the various thermodynamic losses by developing the mathematical models. These analyses...

متن کامل

Exergy Analysis of a High-Temperature-Steam-Driven, Varied-Pressure, Humidification-Dehumidification System Coupled With Reverse Osmosis

In this study, exergy analysis of a novel desalination system is presented and discussed. The water desalination is carried out using combined humidification-dehumidification and reverse osmosis technologies. Six system performance parameters are examined: overall exergetic efficiency, equivalent electricity consumption, specific exergy destruction, specific exergy lost, and total true specific...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010